MÉTODOS PARA ESTIMAR LA PRODUCTIVIDAD PRIMARIA

Una de las tareas en Oceanografía Biológica es la cuantificación de la producción primaria y su varianza, con el fin de calcular los ciclos biogeocínicos de los elementos (Platt, 1986). Los problemas involucrados en el estudio del fitoplancton son numerosos, principalmente porque las comunidades fitoplanctónicas son altamente dinámicas, bajo condiciones apropiadas las células crecen rápidamente y por otro lado, las comunidades pelágicas están constituidas por numerosos grupos de organismos, de diferentes tallas dentro de cada grupo. La primer característica implica grandes fluctuaciones en períodos cortos de tiempo y la segunda lleva consigo problemas de la separación de los diferentes grupos y la determinación de sus propiedades químicas y biológicas (Sakshaug, 1980). Estas fluctuaciones de la biomasa fitoplanctónica y su distribución en parches, no permiten una determinación sistemática de la variabilidad de la productividad del fitoplancton. Un barco sólo puede hacer un muestreo espacial muy reducido en el día, de tal manera que se tienen pocas estimaciones de la tasa fotosintética en el océano en general y dado que la varianza es inversamente proporcional al número de
observaciones, la incertidumbre del papel del fitoplancton en los ciclos biogeoquímicos es muy grande (Platt et al., 1995).

Aunado a los problemas de muestreo en el campo, las mediciones de la productividad primaria se han llevado a cabo por diferentes métodos. Los valores son frecuentemente disímiles y en ocasiones son contradictorios, por lo tanto no es posible hacer comparaciones de flujo de carbono fotosintético mientras los métodos no sean estandarizados (Peterson, 1980). Los principales métodos utilizados para estimar la productividad primaria han sido: el método de la botella clara y oscura, método del carbono catorce y últimamente por métodos indirectos como la fluorescencia natural.

Método de la Botella Clara y Oscura

El método de la botella clara y oscura propuesto por Gardner y Grann (1927), se basa en la producción de oxígeno en una muestra de agua incubada bajo sus condiciones ambientales, por un determinado período de tiempo. Al inicio del experimento se determina la cantidad de oxígeno disuelto en una muestra de agua, una parte de esa agua es incubada en una botella clara (donde sólo ocurre fotosíntesis), otra es incubaba en una botella oscura (donde sólo ocurre respiración).
Después de la incubación, se determina el oxígeno en las muestras, la diferencia entre el oxígeno de la botella clara y el oxígeno inicial representa la productividad neta. La diferencia entre el oxígeno inicial y la botella oscura, es la respiración, la productividad bruta es la productividad total (oxígeno producido (productividad neta) + oxígeno respirado (respiración)).

Este método es ampliamente utilizado, por ser fácil y barato. Sin embargo, es poco sensitivo por lo que se recomienda utilizarse sólo en lugares donde la productividad esperada es alta (áreas eutróficas), y llevando a cabo incubaciones largas (mayores de 6 horas). Además este método presenta los errores propios del método para cuantificar el oxígeno en la muestra.

Método del Carbono Radioactivo

Actualmente el método más utilizado por su alta sensibilidad es el del 14C de Steemann Nielsen (1952). Este método se basa en la incorporación de 14C (en forma de bicarbonato de sodio) por el fitoplancton presente en una muestra de agua. A esta muestra de agua se le agrega una cantidad conocida de 14C y se incuba bajo la luz (natural o artificial) por un período de tiempo. Al final de la incubación la
muestra es filtrada y el material colectado es analizado para conocer la
cantidad de ^{14}C asimilado. En este método se supone que el ^{14}C y el
^{12}C son asimilados a la misma velocidad, independientemente que el
^{14}C tenga mayor peso. Una vez conocida la cantidad de carbono ^{14}C
asimilado, se corrigue por la cantidad de carbono total presente, para ello
se requiere conocer la alcalinidad (carbonatos en el agua) total de la
muestra. Las desventajas de este método son que requiere de mayores
cuidados, el ^{14}C no es fácil de conseguir y se emplean equipos y
materiales caros. Esta técnica nos da una estimación de la
productividad neta.

Método de la Fluorescencia Natural

Una parte de la luz que es absorbida por el fitoplancton es
utilizada por procesos fotosintéticos, otra parte se disipa en forma de
calor y otra es re emitida en forma de fluorescencia. El proceso de
fluorescencia consiste en la absorción de luz por la molécula de
clorofila y su posterior emisión a una longitud de onda mayor,
generalmente centrada en 683 nm (Kiefer y Chamberlin 1989, et al.,
1990). El proceso de fluorescencia puede ser activado por luz
artificial (fluorescencia inducida) o luz natural (fluorescencia natural),
esta fluorescencia natural puede ser medida por instrumentos ópticos. La fluorescencia natural covaría fuertemente con la tasa fotosintética estimada del fitoplancton, el coeficiente de correlación entre la tasa fotosintética calculada y la fluorescencia producida fue de 0.84 con una pendiente de 2 átomos de carbono fijado por cada fotón emitido como fluorescencia (Kiefer y Chamberlin 1989 et al., 1989). La relación entre fluorescencia natural y fotosíntesis (productividad primaria) depende de la probabilidad de que la luz absorbida por las células del fitoplancton la transformen en trabajo fotoquímico o en fluorescencia. Una relación simple para expresar esta fenomenología fue propuesta por Chamberlin et al. (1990):

\[F_{f(t,z)} = \phi_{f(t,z)} \times F_{a(t,z)} \] \hspace{1cm} (4)

\[F_{c(t,z)} = \phi_{c(t,z)} \times F_{a(t,z)} \] \hspace{1cm} (5)

\[F_{c(t,z)} = \left[\frac{\phi_{c(t,z)}}{\phi_{f(t,z)}} \right] \times F_{f(t,z)} \] \hspace{1cm} (6)

$F_{c(t,z)}$, $F_{f(t,z)}$, $F_{a(t,z)}$, $\phi_{c(t,z)}$ y $\phi_{f(t,z)}$ son: la tasa fotosintética (mgC m$^{-3}$ h$^{-1}$; molC m$^{-3}$ s$^{-1}$), la tasa de fluorescencia (moles cuanta m$^{-3}$ s$^{-1}$), la tasa de absorción de las células (moles cuanta m$^{-3}$ s$^{-1}$) y las eficiencias cuánticas para la fotosíntesis (moles C/moles cuanta absorbidos) y
fluorescencia (moles cuanta de fluorescencia/ moles cuanta absorbidos).

Debido a que las mediciones de fluorescencia natural son rápidas y se pueden realizar sin perturbar al fitoplancton, la estimación de la productividad por medio de la fluorescencia tiene algunas ventajas sobre las mediciones tradicionales; la medición es instantánea, no necesita incubar o tomar muestras de agua, pueden hacerse descripciones verticales de productividad o un monitoreo continuo con estaciones ancladas o de deriva (Chamberlin et al., 1990).