CAPITULO VII

TABLA DE PROPIEDADES TERMICAS DE LOS ALIMENTOS

A. Metodología

La forma en que se elaboraron y se presentaron las tablas se hicieron de acuerdo a los siguientes criterios:

- a. Primeramente se presentan las propiedades térmicas del agua y de los componentes químicos de los alimentos.
- b. Las tablas de los alimentos se elaboraron de acuerdo a la gran variedad de ellos y divididos según su estado ya sea sólido o líquido.

En cuanto a los alimentos sólidos, estos se consideran homogéneos y subdivididos en rígidos porosos (como panes y hojuelas), y porosos coloidales como carnes y vegetales. Con respecto a los alimentos líquidos, estos se subdividen en: líquidos de baja viscosidad (como leche y algunos néctares) y de alta viscosidad (como la miel).

- c. Muchos de los alimentos mencionados en el punto b, pueden cambiar durante su procesamiento por lo cual se dividen de acuerdo a su origen en las siguientes categorías:
 - i. frutas secas y frescas
 - ii. vegetales

- iii. productos cárnicos
- iv. granos y hojuelas
- v. productos procesados
- vi. jugo de frutas
- vii. productos lácteos, constituyentes y derivados
- d. Las propiedaes térmicas de los alimentos que se reportan son la conductividad térmica, la difusividad térmica, la densidad y el calor específico.
- e. Las propiedades térmicas de los alimentos se reportan a diferente temperatura y contenido de humedad.
- f. La fuente bibligráfica de la cual se toman las propiedades térmicas de un alimento específico se encuentran citadas en la tabla.
- g. La metodología utilizada para la determinación de cada una de las propiedades térmicas, dependió del autor y del alimento que se reporta.

B. Presentación de Tablas

De acuerdo a la metodología anterior, se elaboraron las siguientes tablas:

- a. La Tabla 10, presenta las propiedades térmicas del agua en un rango de temperatura entre 4.44 y 148.9 $^{\circ}$ C.
- b. La Tabla 11, presenta las propiedades térmicas de los constituyentes de los alimentos. Se incluye también el aire y el hielo.
- c. La Tabla 12, presenta las propiedades térmicas de algunas soluciones utilizadas en alimentos a diferentes temperaturas y concentraciones de agua.
- d. La Tabla 13, presenta las propiedades térmicas de algunos aceites vegetales utilizados para la preparación de alimentos con diferentes rangos de temperatura.
- e. La Tabla 14, presenta las propiedades térmicas de frutas frescas y secas a diferente temperatura y diferente contenido de humedad.
- f. La Tabla 15, presenta las propiedades térmicas de algunos vegetales donde la mayoría se encuentra a temperatura ambiente.
- g. La Tabla 16, presenta las propiedades térmicas de los granos más importantes para la elaboración de cereales a temperaturas altas,
- h. La Tabla 17, presenta las propiedades térmicas de productos procesados que se encuentran comunmente en el mercado.

Tabla 10. Propiedades térmicas del agua.

ī	k	< <	P	Çp
(.0.)	(W/m°C)	(10 ⁻⁶ m ² /s)	(Kg/m³)	(KJ/kg 'C)
004.44	0.575	0.1367	999.8	4.208
010.00	0.585	0.1396	999.2	4.195
015.56	0.595	0.1423	998.6	4.186
021.11	0.604	0.1449	997.4	4.179
026.67	0.614	0.1475	995.8	4.179
032.22	0.623	0.1502	994.9	4.174
037.78	0.630	0.1520	993.0	4.174
043.33	0.637	0.1541	990.6	4.174
048.89	0.644	0.1560	988.8	4.174
054.44	0.649	0.1576	985.7	4.179
060.00	0.654	0.1592	983.3	4.179
065.55	0.659	0.1607	980.3	4.183
071.11	0.665	0.1625	977.3	4.186
076.67	0.668	0.1637	973.7	4.191
082.22	0.673	0.1654	970.2	4.195
087.78	0.675	0.1663	966.7	4.199
093.33	0.678	0.1674	963.2	4.294
104.40	0.684	0.1698	955.1	4.216
115.60	0.685	0.1720	946.7	4.229
126.70	0.685	0.1720	937.2	4.158
137.80	0.685	0.1728	928.1	4.271
148.90	0.684	0.1734	918.0	4,296

Tabla 11. Propiedades térmicas de los constituyentes de los alimentos.

Constituyente	k N/m°C	∢ m²/s	P kg∕m³	Cp KJ/kg°C
Agua	0.600	_i	1000	4.182
Carbohidrato	0.580	-	1550	1.420
Proteína	0.200	-	1380	1.550
Grasa	0.180	-	0930 ·	1.670
Aire	0.025	-	1024	1.000
Hielo	-	-	0917	2.110
Minerales Inorgánicos	-	-	2400	0.840

FUENTE: Hallstrom y col., (1988).

^{1.} Donde exista la presencia de un guión, no se reportan datos

Tabla 12. Propiedades térmicas de algunas soluciones.

COMPUESTO	(,0)	k (W/m°C)	« (10 ⁻⁶ m²/s)	f (kg/m³)	(KJ/kg·C)
Sal	83	0.2470	_	-	1.130
Solucion de NaCl	20	0.5680	0.1359	1151.7	3.627
Salmuera	20	_1	-	1039.0	-
Azűcar	0-100	0.1731	-	-	-
Solucion Azucarada	20	0.5740	-	-	-
Miel	21	0.5580	-	•	3.785
	49	0.5930	-		-

^{1.} Donde exista la presencia de un guión, no se reportan datos.

Tabla 13. Propiedades térmicas de algunos aceites vegetales.

	Ţ . (°¢)	k (H/m*C)	« (10 ⁻⁶ m²/s)	β (kg/m³)	¢p (KJ∕kg•¢)
Aceite de Almendras	984	0.176	-1	920	-
Aceite de Vinagre	027	0.181	-	960	-
	157	0.171	-	820	-
Aceite de Limón	006	0.156	-	940	-
Aceite de Nuez	904	0.156	-	910	-
Aceite de Olivo	020	0.168	-	910	2.0
	187	0.161	-	- ,	_
Aceite de Cacahuate	047	0.168	. •	-	2.2
	24.4	0.168	-	-	2.1
Aceite de Ajonjoli	004	0.176	-	920	-
Aceite de Linaza	060	-	-	910	2.1

^{1.} Donde exita la presencia de un guión, no se reportan datos.

Tabla 14. Propiedades térmicas de frutas frescas y secas.

Fruta	Agua (%)	Ĭ (*C)	P (kg/m³)	k (W/m·C)	(KJ/kg·¢)	« (m²/s)	FUENTE
Fresa	89.0	28	0900	0.462	_1	-	S
Cereza	92.0	28	1000	0.527	-	-	2
Plátano	75.0	27	0980	0.481	-	-	2
Manzana fresca	84.0	29	0840	0.462	-	-	z
Manzana Seca	41.6	23	0856	0.190	2.680	0.96	3
Albericoque	43.6	23	1323	0.375	2.480	1.14	2
Pera	86.8	28	1000	0.595	-	-	2
Piña	85.0	27	1010	0.549	-	-	2
Naranja	86.0	28	1030	0.580		-	2
Limón	91.8	18	1000	0.525	-	-	3
Grosella	30.7	23	1331	0.357	2.310	1.17	3
Dátil	34.5	23	1319	0.337	2.460	1.04	3
Higo	42.9	23	1216	0.335	2.640	1.05	3
Durazno	43.4	23	1259	0.361	2.570	1.12	3
Ciruela -	88.6	26	1130	0.551	2.320	1.05	3
Ciruela pasa	32.2	23	1380	0.336	-	-	3
Ciruela dorada	30.3	23	1422	0.343	2.370	1.02	3
Uva pasa	32.2	0	1380	0.308	2.220	1.01	3
	32.2	20	1380	0.337	2.320	1.05	3
	32.2	40	1380	0.353	2.450	1.05	3

^{1.} En donde exista la presencia de un guión, no se reportan datos.

^{2.} Sweat, (1974).

^{3.} Sweat, (1985).

Tabla 15. Propiedades térmicas de algunos vegetales.

Vegetales	Agua (%)	(°¢)	f (kg/m³)	k (W/m°C)	CP (KJ/kg·C)	((m²/s)
Pepino	95	28	0950	0.600	_1	-
Remolacha	90	28	1530	0.600	-	-
Zanahoria	90	28	1040	0.605	-	-
Cebolla	88	28	0970	0.580	1.930	-
Habo	90	24	1000	0.563	0.862	-
Aguacate	24	28	1060	0.430	· -	-
Brocoli	-	-6	-	0.385	-	-
Papa	=	0-70	1040	-	<u>-</u>	-

FUENTE: Sweat, (1974).

^{1.} En donde exista la presencia de un guión, no se reportan datos.

Tabla 16. Propiedades térmicas de algunos granos.

Nonbre	Agua (%)	(°C)	f (kg/m³)	k (H/m*C)	(KJ/kg·C)	« (m²/s)
Maiz	13.20	80-88	_1	-	0.1020	-
Avena	00.70	·-	-	-	0.0370	-
	24.40	-		-	0.0594	-
	9	-	-	6.305	-	-
	12.50	-	-	-	0.0750	-
Arroz	0	-	-	8.265	-	-
Trigo	11.70	80-88	-	-	0.0872	-
	17.80	80-88	-	-	0.0920	
	09.20	79-120	53.0	0.370	0.0871	0.00446
	0	-	-	0.283	-	-
	01.40	-	52.5	0.319	0.0755	0.00446
	33.60	-	_	8.582	-	-

FUENTE: Kazarian y Hall, (1965).

^{1.} En donde exista la presencia de un guión, no se reportan datos.

Tabla 17. Propiedades térmicas de productos procesados.

Producto	Agua	Ī	P	k	Сp	<
11000000	(%)	('()	(kg/m³)	(N/W.C)	(KJ/kg·C)	(m²/s
Pan de Angel	36.1	23	8147	0.099	2.63	2.56
Pan de Mermelada	23.1	23	0300	0.879		
de Manzana	5012.	43	0300	0.0/7	2.25	1.17
Pastel de Banana	34.1	23	1153	0.322	2.52	1.11
	37.1	23	0350	0.122	2.59	1.35
Pastel de Cereza	27.1	23	1152	0.296	2.45	1.05
	28.2	23	0330	0.088	2.47	1.08
Pastel de Chocolate	31.9	23	0340	0.106	2.57	1.21
	24.3	23	1180	0.308	2.40	1.09
Gelatina de Uva	42.0	0	1320	0.387	2.35	1.25
	42.0	10	1320	0.387	2.43	1.21
	42.0	20	1320	0.391	2.47	1.21
Gelatina de Fresa	41.0	10	1310	0.365	2.52	1.17
	41.0	20	1310	0.388	2.54	1.17
	41.0	30	1310	0.399	2.65	1.15
	41.0	40	1310	0.405	2.70	1.15
Carne Jugosa	33.9	23	1248	0.330	1.29	1.49
Harina de Trigo	40.4	23	1190	0.358	2.05	1,47

FUENTE: Sweat, (1985).

- La Tabla 18, presenta las propiedades térmicas de la carne y sus derivados, incluyendo algunos mariscos y carne blanca.
- j. La Tabla 19, presenta las propiedades térmicas de algunos jugos de frutas con varios rangos de temperatura en un solo sabor.
- k. La Tabla 20, presenta los constituyentes y derivados de algunos productos lácteos con varias concentraciones de agua en los productos que se le aplica un tratamiento especial.

C. Discusión

Existe una gran variedad de alimentos en su forma natural o incrementándose cada día más con ayuda de la tecnología moderna, para la fabricación de productos novedosos. Al organizar todo el conjunto de alimentos, se obtuvo una distribución de las propiedades térmicas para cada tipo de producto.

Haciendo un análisis de la información que existe en las tablas de cada propiedad térmica de los alimentos, se puede establecer lo siguiente:

a. La conductividad térmica (k), la difusividad térmica (α), la densidad (ρ) y el calor específico (Cp) para alimentos

- líquidos depende de su composición así como de su temperatura.
- b. En general, la conductividad térmica y el calor específico de todos los alimentos incrementan al aumentarse el % de humedad.
- c. La conductividad térmica y el calor específico incrementan con la temperatura específicamente en alimentos entre 0 y 40°C.
- d. La conductividad térmica incrementa al aumentar la densidad. También registra un incremento cuando aumenta la temperatura, al igual que el calor específico.
- e. La difusividad térmica, registra un aumento con el incremento del contenido de humedad, excepto en alimentos porosos. También se incrementa cuando la densidad decrece.
- f. La densidad tiene un pronunciado efecto sobre la conductividad térmica, los alimentos menos densos tienen bajas conductividades.
- g. El calor específico aumenta con el contenido de humedad y decrece cuando aumenta la temperatura.

Tabla 18. Propiedades térmicas de la carne y sus derivados.

Producto	Agua	Ī	P	k	Сp	<	
	(%)	(,()	(kg/m³)	(N/m°C)	(KJ/kg·C)	(m²/s)	FUENTI
Bolonia	64.7	20	1000	8.421	3.28	1.28	5
Jamón de Campo	71.8	20	1030	0.480	3.43	1.36	2
Pepperoni	32.0	20	1060	0.256	2.60	0.93	2
Salami	35.6	20	8968	0.311	2.51	1.29	2
Bistec	36.6	20	1050	0.297	2.63	1.08	2
(cortes)	31.9	20	1070	0.298	2.65	1.05	2
	28.3	20	1110	0.282	2.45	1.04	2
	16.0	20	1080	0.234	2.21	0.98	2
	35.3	10	1050	0.272	-	-	2
	35.3	20	1050	0.274	-	-	2
	35.3	30	1050	0.284	-	-	2
	35.3	40	1050	0.291	- '	-	2
	24.0	10	1100	0.246	-	-	2
	24.0	20	1100	0.245	-	-	2
	24.0	30	1100	0.256	-	-	2
	24.0	40	1100	0.254	-	-	2
Pescado fresco	_1	28	-	0.543	-	-	2
Calamar	4.60	20	0501	0.077	-	-	3
	4.60	20	8662	0.505	-	-	3
	4.60	20	0821	0.486	-	-	3
amarón grande	3.45	20	9487	0.637	-	_	3
	3.45	20	0675	0.497	•	-	3
	3.45	20	0828	0.383	-	-	3
alamar grande	82.6	23	1050	0.490	-	-	3
	75.5	23	1020	0.810	-	-	3
	45.1	23	1060	0.330	-	_	3
	14.4	23	0920	0.130	_	-	3

Tabla 18. Propiedades térmicas de la carne y sus derivados (continuación).

Producto	Agua (%)	(°C)	p (kg/m³)	k (H/m*C)	(KJ/kg·C)	((m²/s)	FUENTE
Pollo	74.4	-48	_1	1.490	-	-	_2
(carne blanca)	74.4	-20	-	1.350	-	-	_s
	74.4	-10	-	1.200	-	-	_2
	74.4	0	-	8.476	-	-	_2
	74.4	10	-	8.480	-	-	_2
	74.4	20	-	0.489	-	-	_2
Pollo	76.3	-75	-	1.680	-	-	_2
(carne obscura)	76.3	-40	-	1.550	-	_	_2
	76.3	-20	-	1.430	-	-	_5
	76.3	-10	-	1.260	-	-	_2
76	76.3	0	-	0.481	-	-	_2
	76.3	10	-	0.488	-	-	_2
	76.3	20	-	0.497	-	-	_2

^{1.} Donde exista la presencia de un guión, no se reportan datos.

^{2.} Sweat, (1976).

^{3.} Rahman y col., 1991.

Tabla 19. Propiedades térmicas de jugo de frutas.

JUGOS	Agua (%)	(°C)	k (H/m·C)	< (10 ⁻⁶ m²/s)	β (kg/m³)	Cp (KJ/kg·C
Jugo de Manzana	87.0	20.00	0.559	-	-	-
	87.2	15.52	0.553	0.1367	1050.8	3.850
	_1	80.00	0.631	-	-	-
	70.0	20.00	0.504	-	-	-
Jugo de Pera	89.0	20.00	0.550	-	-	-
	-	80.00	0.629	-	-	_
	68.0	20.00	0.475	-	-	-
	-	80.00	0.532	•		-
Jugo de Cereza	86.7	15.57	0.553	0.1367	1052.4	3.850
lugo de Uva	84.7	15.57	0.556	0.1316	1062.0	3.810
lugo de Naranja	89.0	15.50	0.553	0.1367	1042.8	3.890
Jugo de Frambuesa	84.7	15.57	0.553	0.1367	1046.0	3.890
lugo de Fresa	89.0	15.50	0.571	0.1393	1033.2	3.970
lugo de Tomate	95.2	30.02	0.596	8.1444	1018.1	4.052
	95.2	60.02	0.630	0.1535	1006.3	4.079
	95.2	90.02	0.653	0.1612	0987.2	4.100
ugo en General	89.0	20.00	0.567	-	-	-
	-	80.00	0.639	-	-	_
	70.0	20.00	0.496	-	-	-

^{1.} Donde exista la presencia de un guión, no se reportan datos.

Tabla 20. Propiedades térmicas de algunos productos lacteos y sus constituyentes.

Producto	Agua	ī	P	k	Cp	<	THITAME
1100000	(%)	(·¢)	(Kg/m³)	(N/w+C)	(KJ/kg°C)	(m²/s)	FUENTI
Soluc. Albúmina	40.0	27.0	-	0. 382	_	_	2
	_1	39.0	-	0.389	-	_	2
	-	63.0	-	0.408	-	-	2
	-	90.0	-	8.425	_	_	2
Caseina	0	20.0	1359	-	-	-	2
	0	30.0	1246	-	_	-	2
	0	40.0	1291	-	-	-	2
	0	50.0	1349	-	-	_	2
	65.0	0- 3	-	-	-	0.1055	2
1antequilla	-	55.0	997.9	0.197	-	_	2
	14.2	30-60	-	-	2.332	-	2
largarina	0	0	-	9.200	_	-	2
	-	20.0	-	0.190	-	-	2
eche entera	90.0	15.0	918.0	-	-	0.1970	2
	90.0	20.0	915.8	-	-	-	2
	90.0	37.0	907.9	-	· -	-	2
actosa	90.0	20.0	1043	-	-	-	2
	90.0	40.0	1037	-	-	-	2
*	80.0	20.0	1082	-	-	-	2
eche condensada	90.0	24.2	1032	8.576	3.984	0.1432	2
	90.0	78.2	1032	8.634	0.984	0.1579	2
	80.0	40.5	-	0. 559	-	-	5
	67.0	60.0	-	8.517	•	-	2
	50.0	39.9	-	6.340	-	-	2
eche evaporada	-	0.15	-	9. 486	-	-	2
	-	20.0	-	8.505	-	-	2
	-	80.0	-	8.566	-	-	2

Tabla 20. Propiedades térmicas de algunos productos lácteos y sus constituyentes (continuación).

Producto	Agua (%)	(°C)	ρ (kg/m³)	k (H/m+C)	(KJ/kg·¢)	« (m²/s)	FUENTE
Suero de Leche	90	20	-	0.568	004.061		2
	90	07	-	0.547	-	-	2
	_1	67	<u>.</u>	0.625	-	-	2
	75	40	1093	-	-	-	2
	70	20	1127	-	-	_	2
	65	60	1136	-	_	-	2
Derivados de Leche	-	-	-	0.399	004.000	_	2
(100% Grasa)	-	-	-	0.366	020.000	-	2
	-	-	-	0.313	035,000	-	2
	-	-	-	8.299	045.000	-	2
	-	-	-	0.157	085.000	-	2
	-	-	-	0.132	100.000	-	2
Queso Crema	54	26	1060	9.366	-	-	3
Queso Cheddar	35	26	1130	0.342		-	3

i. Donde exista la presencia de un guión, no se reportan datos.

^{2.} Choi y Okos, (1986).

^{3.} Sweat, (1976).